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1 INTRODUCTION  

The topology optimization problems which state the 
questions on the optimal layout of several materials 
within a feasible domain  of dimension D assume a 
correct mathematical form only if they are a priori 
relaxed, see Allaire (2002). Relaxation means admit-
ting infinitely dense mixtures of the constituents, 
which is equivalent to adopting the hierarchical 
composites to the design problem discussed. For in-
stance, if in the initial formulation two materials C1 
and C2 (of Hooke tensors C1, C2 or equivalent con-
stitutive matrices E1, E2, respectively) are at our dis-
posal to fill up the domain , the relaxed formula-
tion should admit three materials: C1, C2 and C, the 
latter being a composite of Hooke’s moduli tensor 
C(2) formed by mixing the materials C1 and C2 in 
proportions 1 and 2 = 1 - 1. The moduli of the 
composite are compatible with the theory of homog-
enization of periodic composites (Sanchez-Palencia 
1980), the periodicity cell Y being filled up with the 
given materials C1 and C2, the periodicity cell Y re-
places the representative volume element (RVE), 
which is not any restriction (Torquato 2002). The 
best known problem of topology optimization con-
cerns minimization of the compliance of the two ma-
terial structure, built from two isotropic materials of 
given volumes. The relaxed problem assumes the 
form referring to a composite: the unknown is the 

density 2 at each point of the feasible domain . 
Upon solving the relaxed problem we obtain the en-
ergy density of the material and the densities 1(x), 
2(x) at each point x of . Thus the distributions of 
the latter functions are achievable by relaxation. 
However, this determinacy ceases to hold at the mi-
crolevel. One cannot expect that the solutions to the 
relaxed problems of topology optimization would 
determine the microproperties. We can indicate var-
ious microstructures realizing the same relaxed solu-
tion, including the density of energy at each point of 
. In the minimum compliance problem there is a 
theorem at our disposal which says that the solution 
can be attained by orthogonal laminated microstruc-
tures of 2nd  (D =2) or 3rd rank(D = 3), see Allaire 
(2002). In particular, if D = 2, the domain  is di-
vided into 3 subdomains (I, II, III). In domain II the 
minimum of the compliance is attained on 1st rank 
microstructures which smoothly change into 2nd 
rank microstructures along the boundaries between 
the I and II, and II and III subdomains. This kind of 
solution is possible but is not the only one. It is 
known that in the regions II one can indicate other 
microstructures than laminates giving exactly the 
same energy density and refer to the same 1, 2 
values. One can say only for sure that in the domains 
I and III neither 1st rank microstructure suffices. 
Thus this example shows that the relaxed formula-
tions of topology optimization problems do not de 
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ABSTRACT: The paper deals with the inverse homogenization problem: to reconstruct the layout of two 
elastic and isotropic materials given by bulk (2 > 1) and shear (2 > 1) moduli within a hexagonal (2D) pe-
riodicity cell, corresponding to the predefined values of the bulk and shear moduli  (

*
, 

*
), of the effective 

isotropic composite and to the given isoperimetric condition  concerning the volume fractions. The effective 
isotropic moduli are computed according to the homogenization algorithm, with using appropriate Finite El-
ements (FE) techniques along with periodicity assumptions. The inverse problem thus formulated can be ef-
fectively solved numerically by the Sequential Linear Programming (SLP) method. The isotropy conditions, 
usually explicitly introduced into the inverse homogenization formulation, do not appear in the algorithm, as 
being fulfilled by the microstructure construction. The rotational symmetry of angle 120 of the resulting rep-
resentative volume element is assumed. 
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Figure 10. Selected points (, ) within the C-G domain for S1. 

 

 
Figure 11. The reconstructed 01 periodic cells for S1. 

 
Figure 12. The isotropic structures for selected results for S1. 

 
Figure 13. Selected points (, ) within the C-G domain for S2 

 

 
Figure 14. The reconstructed 01 periodic cells for S2. 

 
Figure 15. The isotropic structures for selected results for S2. 
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The results obtained for materials with the  ratio 
are much better than the results obtained for materi-
als with different ratio  (compare Figures 10 and 
13). For the same value of  adopted for both mate-
rials (for S1) the obtained points (, ) are lying 
much closer to the assumed points (*, *) that in 
case of different values of  (for S2). Influence of 
adopted coefficients is particularly evident for the 
cases K, L, M, N, P, Q. It should be noted that a sim-
ilar effect occurs in cases for when the 2 is close to 
0 or 1. This is probably the effect of the method used 
to obtain the 0-1 solution (d = 1 in the last step of the 
SLP). It is necessary to emphasize the fact, that close 
to each other structures in terms of (, ) can be sig-
nificantly different in the topology (compare e.g. K 
and L cases for S1 or M and L for S2). 

2 FINAL REMARKS 

The present paper puts forward a new algorithm 
of the numerical inverse homogenization for the pla-
nar isotropic composites. The paper is aimed at find-
ing the rank-1 subclass of the isotropic composites 
of effective moduli achieving the C-G bounds. The 
key point of this algorithm is the use of the hexago-
nal cell of periodicity instead of a rectangular cell. It 
is assumed that the internal structure of the hexago-
nal cell possesses rotational symmetry of angle 120 
degree. This assumption results in a significant re-
duction in the number of design variables to the op-
timization problem considered (approximately 6 
times less than for the case of the cell of a rectangu-
lar shape). Moreover, such a cell shape ensures isot-
ropy of any periodic composites of such class thus 
essentially reducing the number of constraints in-
volved in the optimization problem. The optimiza-
tion problem considered has been solved by the SLP 
method augmented with appropriate filters. It is 
worth emphasizing that the results obtained lie fairly 
close to the assumed ones located on the C-G bound, 
but the bounds are not attained. The presented re-
sults show that the points along the C-G bound are 
attainable only within the class of microstructures of 
the rank higher than one. 
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